Benha University
Faculty of Engineering at Shoubra
Electrical Engineering Department

Electromagnetic Fundamentals $2^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 2

1 Determine the volume V of a region defined in a cylindrical coordinate system as $1 m \leq r \leq 2 m, 0 \leq \phi \leq \frac{\pi}{3}$ rad, and $0 \leq z \leq 1 m$ by integration. Check your result without performing the integration.

$$
\left[V=\frac{\pi}{2} m^{3}\right]
$$

2 Determine the area S of a surface in a spherical coordinate system as $r=2 \mathrm{~m}$ and $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{3} \quad \mathrm{rad}$.

$$
\left[A=5.205 \mathrm{~m}^{2}\right]
$$

3 Use the spherical coordinate system to find the area of the strip $\alpha \leq \theta \leq \beta$ on the spherical shell of $r=a$ show this strip by sketching. What result when $\alpha=0$ and $\beta=\pi$?

$$
\left[\begin{array}{c}
A=2 \pi a^{2}[\cos \alpha-\cos \beta] \\
A=4 \pi a^{2}
\end{array}\right]
$$

4 Use the cylindrical coordinate system to find the area of the curved surface of a right circular cylinder where: $r=2 m, h=5 m$ and $30^{\circ} \leq \phi \leq 120^{\circ}$ as shown in fig

$$
\left[A=5 \pi m^{2}\right]
$$

5 Given the point $P\left(5 \mathrm{~m}, 60^{\circ}, 2 \mathrm{~m}\right)$ and $Q\left(2 \mathrm{~m}, 110^{\circ},-1 \mathrm{~m}\right)$
(a) Find the distance $R_{P Q}$
(b) Give a unit vector in Cartesian coordinates at P that is directed towards Q
(c) Give a unit vector in cylindrical coordinates at P that is directed towards Q

$$
\left[\begin{array}{c}
R_{P Q}=5.014 \mathrm{~m} \\
\bar{a}_{P Q}=-0.635 \bar{a}_{x}-0.489 \bar{a}_{y}-0.598 \bar{a}_{z} \\
\text { At point } P, \bar{a}_{P Q}=-0.741 \bar{a}_{\rho}+0.306 \bar{a}_{\phi}-0.598 \bar{a}_{z}
\end{array}\right]
$$

6
(a) Find \bar{a}_{x} in the spherical components at $P(3,-4,5)$
(b) Find \bar{a}_{θ} in Cartesian components at P

$$
\left[\begin{array}{c}
\bar{a}_{x}=0.424 \bar{a}_{r}+0.424 \bar{a}_{\theta}+0.8 \bar{a}_{\phi} \\
\bar{a}_{\theta}=0.424 \bar{a}_{x}-0.565 \bar{a}_{y}-0.707 \bar{a}_{z}
\end{array}\right]
$$

7 A closed surface is defined in spherical coordinates by $3 \leq r \leq 5$,
$0.1 \pi \leq \theta \leq 0.3 \pi, 1.2 \pi \leq \phi \leq 1.6 \pi$
(a) Find the volume enclosed.
(b) Find the total surface area.

$$
\left[\begin{array}{c}
V=14.912 \\
\text { Total Area }=36.8125
\end{array}\right]
$$

5 Transform $\bar{A}=y \bar{a}_{x}+x \bar{a}_{y}+\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} \bar{a}_{z}$ to cylindrical coordinates.

$$
\left[\bar{A}_{c y l}=\rho \sin 2 \phi \bar{a}_{\rho}+\rho \cos 2 \phi \bar{a}_{\phi}+\rho \cos ^{2} \phi \bar{a}_{z}\right]
$$

